
COMPUTER PROBLEMS IN GOODNESS-OF-FIT

BY

MICHAEL A. STEPHENS

TECHNICAL REPORT NO. 420

AUGUST 10, 1989

D TIiC% r -PREPARED UNDER CONTRACT

ELECTE NO0014-89-J-1627 (NR-042-267)

AUG 1 89 FOR THE OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted
for any purpose of the United States Government

Approved for public release; distribution unlimited.

DEPARTMENT OF STATISTICS

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

J3P. 4

898O



COMPUTER PROBLEMS IN GOODNESS-OF-FIT

BY

MICHAEL A. STEPHENS

TECHNICAL REPORT NO. 420

AUGUST 10, 1989

Prepared Under Contract

N00014-89-J-1627 (NR-042-267)

For the Office of Naval Research

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted

for any purpose of the United States Government -C

Approved for public release; distribution unlimited.

Accesio:, For
NTIS CRA&I

D DfC TAS

U;, ;'d n,.n od
DEPARTMENT OF STATISTICS JUSWC.

STANFORD UNIVERSITY By

STANFORD, CALIFORNIA Dsti..o

Av t,1: Cdes

C, ,td



1. INTRODUCTION.

In this article, we consider some very elementary but important problems

which arise from modern uses of the computer in statistics, particularly in

connection with testing goodness-of-fit. These involve (a) estimating

percentage points; (b) simulating a Gaussian process; and (c) approximating

the inverse of a covariance matrix of order statistiscs.

2. ESTIMATING PERCENTAGE POINTS.

The first problem is that of estimating percentage points of an

intractable distibiution. For example, the distributions of many

goodness-of-fit statistics are very difficult to find, particularly for a

finite sample, and particularly if parameters are estimated. The standard

procedure is to simulate the situation considered, and calculate the

statistic, say S; then repeat this n times to obtain the Monte Carlo

distribution of S. The p-th percentile, for example, would be estimated by

the [np]+l order statistic of the S-sample. Some years ago, Schafer (1974)

suggested that it would be better to take, say, c samples of m-n/c Montp

Carlo values, and take the average of the c estimates of the p-th

percentile as the overall estimate; thus if Si(k) denotes the k-th order

statistic of the i-th subsample, the estimate would be given by Zc I S iC
Pd1 i(k)

where k - [mp]+l. Schafer's suggestion was investigated by two colleagues

and myself (Juritz, Juritz, and Stephens, 1983); we showed that the bias in

the estimate is less for the estimate from one full sample than it is for the

estimate from the mean of c subsamples, except in somewhat contrived cases,

while the confidence intervals for the estimates were approximately the same

size. This work was subsequently confirmed by Dudewicz and van der Meulen
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(1984), who illustrated their work on a statistic they had introduced for

testing uniformity. Zelterman (1987) also discusses this problem.

Bias in estimates of percentage points.

Of course, for certain distributions, exact values of mk, the expected

values of X(k), will be known, and the bias in the Monte Carlo estimate can

be estimated. Thus, for the normal distribution, for a sample of size 100,

the 95% point will be estimated by X [96] which has expected value 1.6872,

to compare with the true percentile value of 1.6449. In Juritz, Juritz, and

Stephens (1983) we published a table showing the bias for the 95% and 97.5%

points for the standard normal distribution, and for various sample sizes.

Table 1 below is a similar table for the standard exponential distribution

with mean 1. The values of r and s are those for which the interval

I - (X (r)X (s) is a 95% confidence interval for the true percentile. These

are found to high accuracy as follows. Let p be the percentile at level

1/2
p, let w - (np(l-p)) , and let z denote the (lO01) percentile of the

standard normal distribution. Then the choice r - -w z + np + - and
7 2

S - W Z + np + I, where r - i-a/2, gives a (1-a) 100% confidence interval
7 2

for p.

The approximate confidence interval length is obtained from a formula

in Juritz, Juritz and Stephens (1983). It is clear that -4 e bias diminishes

with sample size; since the mean of several estimates will give the same

bias, it is better to use one larger sample for a point estimate.

Confidence intervals for percentage points.

Although in practice point estimates of percentage points are nearly

always all that are given when tables are produced, it is useful to examine

confidence intervals for the points, as a guide to their accuracy. In Table

2 the multi-sample and single-sarple confidrnc intervals are compared for
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the 95% point of a standard normal distribution, with true value 1.645. The

intervals are obtained from 6 Monte Carlo tests, for each of two comparisons.

In the left-hand half of Table 2 the comparison is between c - 10 runs each

of size m - 100, (the multi-sample case) and one run of size 1000 (the

single-sample case). In the right hand half of the Table, the multi-sample

case has c - 10 and m - 500, to compare with the single-sample n - 5000.

Consider the left-hand part of Table 2. For each of the 6 tests, in the

multi-sample case, the estimate is Xp, the mean of the 10 values of Xp

where X is X(1) with I - 96. The standard deviation a of X(1) is

0.210, found from the formula in David (1970, p. 65). This is to be compared

with S, the standard deviation of the 10 values of X (1. For each test,

the 95% confidence limits for p have been found, and the length Im of

the confidence interval recorded.

In the single-sample case, the estimate of p - X(1) with I - 951.

For each test, the confidence limits have been found from X(r ) and X(s),

with rs as given above, and the length I recorded.

From the top half of the table, it can be seen that the experimental

values S cluster around the theoretical value a - 0.210. More
p

importantly, the confidence intervals from the top and bottom parts of the

table are approximately the same, as was shown by Juritz, Juritz and Stephens

(1983), but the bias in the one large run is much less than in the

multi-sample case. These conclusions are supported by the right-hand half of

the table, where, in the top part, I - 476 and in the bottom part, X - X, p - (2)

with 2 - 4751. Thus, the studies demonstrate conclusively the advantage of

the single sample over the multi-sample method. Dudewicz and van der Meulen

(1984) discuss confidence intervals further.
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Estimates obtained from approximations using moments.

We now turn to another idea; would it perhaps be better to approximate

percentiles by calculating the sample moments from the 1000 (say) values in

the large Monte Carlo run, and fitting a suitable curve to the moments to

approximate the distribution? Several curve-fitting families are useful for

such a purpose, especially when, as for many statistics, the distribution

required can be expected to be smooth. For many goodness-of-fit statistics,

the values are usually required in the longer tail (usually the upper

tail'; for such purposes, Pearson curves using 4 moments to make the fit have

been found to be very useful. It should be emphasized that this has been the

case when theoretical (that is, exact) moments could be calculated. Here we

propose to experiment with sample moments, based on large samples. When

also. as often happens, the lower end point of the distribution is known

(often it is zero), a 3-moment Pearson curve fit can be tried, or a 3-moment

2 k
fit of the form (cX ) . Since higher sample moments have notoriously high

sampling variability, there is something to be said for approximations using

only 3 moments.

We have recently explored the curve-fitting possibility, as opposed to

direct estimation of the percentile from the Monte Carlo sample, by again

taking samples from distributions for which the exact percentiles are known.

Example 1. The Weibull distribution. The first illustration is for a

variable x which has a Weibull distribution with shape parameter 2, that

2
is, x has the standard exponential distribution. Thus, the exact value of

p - [-log(l-p)] / . The steps in the curve-fitting technique are:

(a) Take a sample of size n (say 1000) from the Weibull distribution, and

estimate, say fp by X(k), where k - [np]+l.

(b) Also, calculate the first four sample moments M', r - 1,..., 4, where

r
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r - r
M' Xi/n"

(c) Fit either a 4-moment or a 3-moment Pearson curve (knowing the lower end

of the distribution is zero) and find the estimate Y (4-moment fit) or Z
p P

(3-moment fit) of p.

(d) Repeat steps (a), (b) and (c) 50 times, to obtain 50 estimates by each

method.

(e) Calculate the average, the variance, and the mean square error (MSE) of

the 50 estimates; from the average and the known value, we can estimate the

bias.

The experiment can be repeated for different sample sizes; we used

n - 100, 200, 500 and 1000. These sample sizes are small compared with those

commonly used in Monte Carlo studies, but the trend of the results can easily

be seen.

Table 3 gives a comparison of points all along the distribution, for

both Pearson curve fits, for n - 100 and n - 1000. Type 1 refers to the

4-moment fit, and Type 2 to the 3-moment-and-lower-end-point fit.

Comments on Table 3.

(a) The Pearson curve fits often give somewhat greater bias to the

estimate, but there is a smaller variance, so that the MSE of the Pearson

curve estimate is better than for the Monte Carlo estimate.

(b) As expected, the 3-moment fit does better in the lower tail; but it

is only very slightly worse in the upper tail; the marginal diference

suggests that the 3-moment fit is to be preferred.

(c) There is a marked improvement in MSE as n gets larger in both

methods, as one would expect; however, the relative sizes of MSE for Pearson

curve fits compared to straight Monte Carlo estimation are still somewhat

smaller as n increases.
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Many goodness-of-fit statistics have asymptotic distributions which are

sums of weighted chi-squares (see, e.g., Stephens, 1976, 1977, 1979), so our

next example is a comparison for such a distribution. Statistic X has the

distribution X - .3zI + .2z2 + .2z3 + Az 4 + Az 5 + Az 6 ' where z are

independent X2 variables. Table 4 gives a comparison of Monte Carlo and

Pearson curve points as before, and again Pearson curves perform well in

estimating points, measured by the MSE.

Implications for the bootstrap.

There are some interesting possible implications from this result. The

bootstrap is now a very popular method for deducing properties of a

statistic; the statistic is calculated many times over, by resampling from

one sample. In its simplest form, the empirical distribution function (EDF)

of the sample is used to estimate the population distribution and samples are

then drawn from the estimate. It might, in some circumstances, be better to

approximate the parent population by a smooth curve, such as a Pearson curve,

fitted to the sample moments, and then to draw samples from the Pearson curve

distribution when estimating properties of the relevant statistic by Monte

Carlo methods.

3. SIMULATION OF A GAUSSIAN PROCESS

It is extremely useful, when finding percentage points for test

statistics by Monte Carlo, to calculate the asymptotic points, instead of

estimating them as described at the end of the previous section; then when

the percentage points at level p are plotted against 1/n or 1//n, the

curve is "anchored" at 1/n-0. If the curve can then be drawn with

confidence, one can deduce percentage points for quite large samples without

incurring the expense of large-sample Monte Carlo studies. Many
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goodness-of-fit statistics are functionals of a process which is

asymptotically a Gaussian process; such a process, based on the EDF, is often

tied down at 0 and at 1, and is referred to as a Brownian bridge. Thus we

wish to simulate a Brownian bridge, a Gaussian process Z(t) with Z(O) - 0

and Z(1) - 0, and with known mean (often zero) and known covariance p(s,t).

For example, the Kolmogorov statistic D is the supremum of Z(t), and the

Cramer-von Mises statistic W2  is fl Z2 (t)dt.

Monte Carlo simulation of the process Z(t) is difficult, and leads to

2
further difficulties in finding the asymptotic distribution of D or W

Of necessity, on a computer, Z(t) must be discretized. One way to construct

a discrete approximation to Z(t) is as follows:

(a) Choose values tit 2 ..... tk equally spaced between 0,1.

(b) Generate ui, a standard normal variate, at ti, i - I ....k. Let

u' - vector (ul,u 2,.....uk).

(c) Create V, a k x k matrix with entries V - P(t.,t.), where p(s,t)

is the covariance function of the Gaussian process Z(t). Suppose W is the

1/2
square root matrix of V, that is, W - V 1

. Since V is positive definite

this is easily obtained. Suppose V - P A P' where P is orthogonal and A

is diagonal, with elements on the main diagonal equal to AIA 2 ...... Ak  Then
* p,

W - P A P', where A is diagonal with elements /AI, i -

(d) Let z' be vector (zl,z 2 f ... ,zk ), given by z - Wu.

(e) Then let Z(ti), the estimate of Z(t), be zi. The mean E(z) - 0, and

the covariance E(zz') - E(Wuu'W') - V. Thus the covariance

E(Z(ti)Z(tj) - P(tiltj) and the values Z(ti), i - 1,...,k give a discrete

k-variate approximation to the continuous Z(t). Note also that there can be

other matrices W such that WW' - V, so that various approximations are

possible.
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Suppose the number of points k is called the order of the

approximation.

Even when an approximation to Z(t) has been created, there are clearly

2further approximations involved in calculating D or W . The above

procedure must be repeated n times, say, to find the distribution of the

statistics. One might then suppose that the percentage points of the

asymptotic distribution of, say D, will be found as the limit of the

smoothed Monte Carlo values plotted against I/k or i//k, as k becomes

larger. Unfortunately as k becomes larger, the manipulation of the k x k

matrices V and V1/2 becomes increasingly prone to numerical errors.

Chandra, Singpurwalla and Stephens (1981), carried out this procedure to

obtain points D for use in testing for a Weibull distribution with unknown

parameters, and found that as k became larger so that m - i/k -) 0, the

plot of a typical percentile of D against m was not monotonic. In the

end, it then becomes difficult if not impossible to extrapolate to get

asymptotic percentage points.

Another method exists of constructing an approximation to the process

Z(t). Since p(s,t) is positive semi-definite, one can proceed as follows.

(a) Solve the integral equation
I

fi(s ) - A, f p(st)fi(t)dt

0

for eigenvalues A'. and eigenfunctions f i(t).

(b) Let Ul,U 2 '... k be a set of k independent standard normal variables.

k
(c) Let Zk(t) - Z fi (t)ui//Ai . Then as k k , Z(t) tends to Z(t), say;

i-l

Z(t) is a Gaussian process with mean 0 and covariance

p(s,t) - Z fi(s)fi(t)/Ai and by well-known properties of integral
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equations,this is equal to p(s,t), the kernel of the equation in (a). Thus

Z k(t) can be regarded as a k-th order approximation to Z(t). Here the

approximation arises because in real calculations the sum must be terminated

at a finite uk; then the Zk(t) can be calculated at any point in the

interval (0,I). Once a realization has been made by the choice of u., the

value of D or W2 can be found accurately. This approximation appears,

therefore, to have some advantage: the difficulties arise in calculating the

f.(t) and the A.. It would be interesting to see this technique explored

further: a good problem on which to test it would be that of finding the

distribution of D or W2 when parameters in the tested distribution are

fully specified: then the distributions of D and W2 are both exactly

known. If the technique is successful, it could be used to find the

distribution of D for cases where parameters are unknown. The accuracy can

then be tested by finding the points for W2 , and comparing with the exact

points, which are known for this statistic; these points are given, for many

distributions, in Stephens (1986a). To find the distribution of D, the

Kolmogorov statistic, in cases where parameters are unknown is a problem of

considerable interest, since D is a well-known statistic for testing fit;

although in fact it is often much less powerful than W2 or the related

Anderson-Darling statistic A2  (see, for example, Stephens 1974, 1986a).

In the above discussion we referred to the method of estimating

asymptotic points of a distribution, as a parameter (k above) tends to

infinity, by plotting points for finite k against 1/k or 1//k, and

extrapolating a curve through these points to I/k - 0. How this

extrapolation should be done is itself a problem. It often arises when

asymptotic points (as sample size n tends to infinity) are required for

making tables, say, and are to be obtained by extrapolating from Monte Carlo
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results for finite samples. Suppose Monte Carlo experiments have given

percentage points estimates pn for level p and sample size n. It is

valuable to plot pn against 1/n, say, and then an extrapolation to

1/n - 0 should give an estimate of the asymptotic point. However, how

should this be done? It may even be known that the value pn can be

-pressed as pn - a + a m + a2m2 + a m3 ''', where m-I/n or i//n. The

problem is then how best to estimate a from estimates pn ? We raise the

question here because this appears to be an important practical problem in

preparing tables of points, one which appears to need further examination.

Knowledge of the values of al, a2 ... above would also be helpful to derive

2modified forms of test statistics, for example, of D or W , such as are

used in some tables in Stephens (1986a). Such forms have the merit of

drastically reducing the size of tables, and of making computerization of

tables much easier.

4. APPROXIMATING THE INVERSE OF A COVARIANCE
MATRIX OF ORDER STATISTICS

For some techniques of testing fit, based ultimately on the idea of

probability plots, one needs V 1, the inverse of V, where V is the

covariance matrix of the order statistics X (1)X(2) ... X(n) of a sample

from a completely specified distribution. For a review of such tests see

Stephens (1986b). The most notable example of the use of V I is with the

Shapiro-Wilk test for normality, where the order statistics come from the

normal distribution with mean 0 and variance 1.

When X has the uniform distribution with lmts 0 and 1, the covariance

matrix Q with entries qij - covariance(X() X (J)) is given by

qij - (i/(n+l)}{l-j/(n+l))/(n+2), 1 : 1 : j : n. The other entries, for

i > J, are obtained from the symmetry of Q. More generally, if X has
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continuous density f(x), and if mi - E(X(M)), the covariance matrix V

with entries v - covariance (X (i),X )) has the approximation, for large

n, v i = q ij/(f(mi)f(m.)). (Blom, 1962). The inverse of cQ, where c is

-i
(n+l)(n+2), is the matrix M given below. It then follows that V can be

approximated by c DMD, where D is the diagonal matrix, and M is the

tri-diagonal matrix:

D- f(m1 ) M- 2 -1 0

f(m 2) -1 2 -1

-1 2 -1

-1 2 -1

f(m)
L n

-1 2

M can also be written as M-NN' where N is lower triangular. In this

way, individual entries v of V can be approximated by easy formulas

whose accuracy increases with n. However, for small n, this approximation

is : ot accurate enough for many practical uses.

For the normal case, Davis and Stephens (1977) used various identities
-i

to give a good approximation to V , and this can be inverted to give V

Can similar identities be used to give accurate approximations to V for

other distributions, so that V can then be inverted to give V 1

accurately? Even if such identities were available, this technique seems a

rather indirect way to approximate V "1 ; can an accurate approximation for

V "  be found more directly? These are useful questions to answer not only

in connection with tests of fit, but also for estimating parameters using

linear combinations of - 'r statistics.
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Table 1

Expected values of order statistics from the exponential distribution,
used in estimates and confidence intervals for p.

p - .95; True Ep - 2.9957

bias L :Exact
s

x Expect-Expected
ed C.I.

n k mk 10 r mr s m C.I. Length
length (approx.)

100 96 3.1040 1083 92 2.4695 100 5.1874 2.718 1.802
400 381 3.0222 265 372 2.6428 390 3.6410 .998 .866
500 476 3.0169 212 466 2.6746 486 3.5413 .867 .772

1000 951 3.0063 106 937 2.7572 965 3.3387 .582 .543
2000 1901 3.0010 53 1882 2.8262 1920 3.2129 .387 .383
5000 4751 2.9978 21 4721 2.8843 4781 3.1259 .242 .242

100CO 9501 2.9968 11 9458 2.9142 9544 3.0868 .173 .171
100000 95001 2.9958 1 94866 2.9692 95136 3.0232 .054 .054

p - .975; True p - 3.6889

100 98 3.6874 -15 95 2.9040 - - - -

400 391 3.7410 521 385 3.2517 397 4.7366 1.485 1.221
500 488 3.6896 7 481 3.2451 495 4.5095 1.264 1.093

1000 976 3.7095 206 966 3.3673 986 4.2339 .867 .773
2000 1951 3.6992 103 1937 3.4501 1965 4.0316 .582 .547
5000 4876 3.6930 41 4854 3.5303 4898 3.8874 .357 .346

10000 9751 3.6909 20 9720 3.5738 9782 3.8236 .250 .248
100000 97501 3.6891 2 97404 3.6510 97598 3.7287 .078 .077
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Table 3

Comparison of estimates of percentage points obtained 
from (a) direct Monte

Carlo estimates and (b) Pearson curve fits. The true distribution is Weibull

with shape parameter 2. The results are based on 50 Monte Carlo runs, each

with sample size n - 100 or n - 1000. The alpha-levels are measured from

the lower tail.

Part 1. n - 100.

Monte Carlo Pearson Curve Type 1 Pearson Curve Type_2

Alpha level - 0.10 Exact Perc. Pt. - 0.324593

A 0.33730 0.32783 0.32510

V 0.00363 0.00221 0.00218

B 0.01271 0.00323 0.00050

M 0.00379 0.00223 0.00218

Alpha level - 0.50 Exact Perc. Pt. - 0.832555

A 0.82924 0.81905 0.82088

V 0.00411 0.00328 0.00307

B -0.00331 -0.01350 0.01167

M 0.00412 0.00346 0.00320

Alpha level - 0.90 Exact Perc. Ft. - 1.517427

A 1.52954 1.50708 1.50560

V 0.01196 0.00777 0.00675

B 0.01211 -0.01035 -0.01182

M 0.01211 0.00788 0.00689

Alpha level - 0.99 Exact Perc. Pt. - 2.145966

A 2.21615 2.07182 2.07348

V 0.05308 0.02907 0.03337

B 0.07018 -0.07415 -0.07248

M 0.05801 0.03457 0.03862

Part 2. n - 1000.

Monte Carlo Pearson Curve Type 1 Pearson Curve Type 2

Alpha level - 0.10 Exact Perc. Pt. - 0.324593

A 0.32454 0.32768 0.32726

V 0.00033 0.00025 0.00024

B -0.00005 0.00309 0.00267

M 0.00033 0.00026 0.00025

A - Average; V - Variance; B - Bias; M - M.S.E.
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Monte Carlo Pearson Curve Type I Pearson Curve Type 2

Alpha level - 0.050 Exact Perc. Pt. - 0.832555

A 0.83302 0.83106 0.82760
V 0.00031 0.00028 0.00027
B 0.00046 -0.00149 -0.00495
M 0.00031 0.00028 0.00030

Alpha level - 0.90 Exact Perc. Pt. - 1.517427

A 1.52723 1.52818 1.53567
V 0.00090 0.00066 0.00052
B 0.00980 0.01075 0.01824
M 0.00100 0.00078 0.00085

Alpha level - 0.99 Exact Perc. Pt. - 2.145966

A 2.15864 2.15196 2.14043
V 0.00506 0.00241 0.00260
B 0.01268 0.00600 -0.00554
M 0.00523 0.00245 0.00263

Table 4

Comparison of estimates of percentage points (see Table 3). True
distributions: sum of weighted chi-squares.

Part 1. n - 100.

Monte Carlo Pearson Curve Type 1 Pearson Curve Type 2

Alpha level - 0.10 Exact Perc. Pt. - 0.342

A 0.34954 0.36148 0.32372
V 0.00170 0.00196 0.00154
B 0.00754 0.01948 -0.01828
M 0.00176 0.00234 0.00188

Alpha level - 0.50 Exact Perc. Pt. - 0.862

A 0.86908 0.83069 0.86897
V 0.00382 0.00426 0.00298
B 0.00708 -0.03131 0.00697
M 0.00388 0.00524 0.00303

A - Average; V - Variance; B - Bias; M - M.S.E.
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Monte Carlo Pearson Curve Type 1 Pearson Curve Type 2

Alpha level - 0.90 Exact Perc. Pt. - 1.831

A 1.90994 1.90516 1.86493

V 0.04637 0.02837 0.02400

B 0.07894 0.07416 0.03393

M 0.05260 0.03387 0.02515

Alpha level - 0.99 Exact Perc. Pt. - 3.087

A 3.59271 3.12139 3.11789
V 0.65287 0.19780 0.16248

B 0.50571 0.03439 0.03089

M 0.90861 0.19898 0.16343

Part 2. n - 1000.

Alpha level - 0.10 Exact Perc. Pt. - 0.342

A 0.34527 0.34522 0.33629

V 0.00018 0.00016 0.00022

B 0.00327 0.00322 -0.00571

M 0.00019 0.00017 0.00025

Alpha Level - 0.50 Exact Perc. Pt. - 0.862

A 0.86873 0.86074 0.87275
V 0.00057 0.00057 0.00044
B 0.00673 -0.00126 0.01075
M 0.00062 0.00057 0.00056

Alpha level - 0.90 Exact Perc. Pt. - 1.831

A 1.85648 1.86264 1.84780

V 0.00325 0.00241 0.00217

B 0.02548 0.03164 0.01680

M 0.00390 0.00341 0.00245

Alpha level - 0.99 Exact Perc. Pt. - 3.087

A 3.12492 3.08379 3.08268
V 0.02997 0.01909 0.01747
B 0.03792 -0.00321 -0.00432
M 0.03141 0.01910 0.01749

A - Average; V - Variance; B - Bias; M - M.S.E.
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